Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mol Graph Model ; 124: 108540, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-20244484

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised concerns worldwide due to its enhanced transmissibility and immune escapability. The first dominant Omicron BA.1 subvariant harbors more than 30 mutations in the spike protein from the prototype virus, of which 15 mutations are located at the receptor binding domain (RBD). These mutations in the RBD region attracted significant attention, which potentially enhance the binding of the receptor human angiotensin-converting enzyme 2 (hACE2) and decrease the potency of neutralizing antibodies/nanobodies. This study applied the molecular dynamics simulations combined with the molecular mechanics-generalized Born surface area (MMGBSA) method, to investigate the molecular mechanism behind the impact of the mutations acquired by Omicron on the binding affinity between RBD and hACE2. Our results indicate that five key mutations, i.e., N440K, T478K, E484A, Q493R, and G496S, contributed significantly to the enhancement of the binding affinity by increasing the electrostatic interactions of the RBD-hACE2 complex. Moreover, fourteen neutralizing antibodies/nanobodies complexed with RBD were used to explore the effects of the mutations in Omicron RBD on their binding affinities. The calculation results indicate that the key mutations E484A and Y505H reduce the binding affinities to RBD for most of the studied neutralizing antibodies/nanobodies, mainly attributed to the elimination of the original favorable gas-phase electrostatic and hydrophobic interactions between them, respectively. Our results provide valuable information for developing effective vaccines and antibody/nanobody drugs.

2.
Signal Transduct Target Ther ; 8(1): 20, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2185773

RESUMEN

An ongoing randomized, double-blind, controlled phase 2 trial was conducted to evaluate the safety and immunogenicity of a mosaic-type recombinant vaccine candidate, named NVSI-06-09, as a booster dose in subjects aged 18 years and older from the United Arab Emirates (UAE), who had administered two or three doses of inactivated vaccine BBIBP-CorV at least 6 months prior to enrollment. The participants were randomly assigned with 1:1 to receive a booster dose of NVSI-06-09 or BBIBP-CorV. The primary outcomes were immunogenicity and safety against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, and the exploratory outcome was cross-immunogenicity against other circulating strains. Between May 25 and 30, 2022, 516 adults received booster vaccination with 260 in NVSI-06-09 group and 256 in BBIBP-CorV group. Interim results showed a similar safety profile between two booster groups, with low incidence of adverse reactions of grade 1 or 2. For immunogenicity, by day 14 post-booster, the fold rises in neutralizing antibody geometric mean titers (GMTs) from baseline elicited by NVSI-06-09 were remarkably higher than those by BBIBP-CorV against the prototype strain (19.67 vs 4.47-fold), Omicron BA.1.1 (42.35 vs 3.78-fold), BA.2 (25.09 vs 2.91-fold), BA.4 (22.42 vs 2.69-fold), and BA.5 variants (27.06 vs 4.73-fold). Similarly, the neutralizing GMTs boosted by NVSI-06-09 against Beta and Delta variants were also 6.60-fold and 7.17-fold higher than those by BBIBP-CorV. Our findings indicated that a booster dose of NVSI-06-09 was well-tolerated and elicited broad-spectrum neutralizing responses against divergent SARS-CoV-2 variants, including Omicron and its sub-lineages.


Asunto(s)
COVID-19 , Vacunas , Adulto , Humanos , SARS-CoV-2 , COVID-19/prevención & control
3.
Elife ; 112022 08 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2025329

RESUMEN

Large-scale populations in the world have been vaccinated with COVID-19 vaccines, however, breakthrough infections of SARS-CoV-2 are still growing rapidly due to the emergence of immune-evasive variants, especially Omicron. It is urgent to develop effective broad-spectrum vaccines to better control the pandemic of these variants. Here, we present a mosaic-type trimeric form of spike receptor-binding domain (mos-tri-RBD) as a broad-spectrum vaccine candidate, which carries the key mutations from Omicron and other circulating variants. Tests in rats showed that the designed mos-tri-RBD, whether used alone or as a booster shot, elicited potent cross-neutralizing antibodies against not only Omicron but also other immune-evasive variants. Neutralizing antibody ID50 titers induced by mos-tri-RBD were substantially higher than those elicited by homo-tri-RBD (containing homologous RBDs from prototype strain) or the BIBP inactivated COVID-19 vaccine (BBIBP-CorV). Our study indicates that mos-tri-RBD is highly immunogenic, which may serve as a broad-spectrum vaccine candidate in combating SARS-CoV-2 variants including Omicron.


The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to pose a serious threat to public health and has so far resulted in over six million deaths worldwide. Mass vaccination programs have reduced the risk of serious illness and death in many people, but the virus continues to persist and circulate in communities across the globe. Furthermore, the current vaccines may be less effective against the new variants of the virus, such as Omicron and Delta, which are continually emerging and evolving. Therefore, it is urgent to develop effective vaccines that can provide broad protection against existing and future forms of SARS-CoV-2. There are several different types of SARS-CoV-2 vaccine, but they all work in a similar way. They contain molecules that induce immune responses in individuals to help the body recognize and more effectively fight SARS-CoV-2 if they happen to encounter it in the future. These immune responses may be so specific that new variants of a virus may not be recognized by them. Therefore, a commonly used strategy for producing vaccines with broad protection is to make multiple vaccines that each targets different variants and then mix them together before administering to patients. Here, Zhang et al. took a different approach by designing a new vaccine candidate against SARS-CoV2 that contained three different versions of part of a SARS-CoV2 protein ­ the so-called spike protein ­ all linked together as one molecule. The different versions of the spike protein fragment were designed to include key features of the fragments found in Omicron and several other SARS-CoV-2 variants. The experiments found that this candidate vaccine elicited a much higher immune response against Omicron and other SARS-CoV-2 variants in rats than an existing SARS-CoV-2 vaccine. It was also effective as a booster shot after a first vaccination with the existing SARS-CoV-2 vaccine. These findings demonstrate that the molecule developed by Zhang et al. induces potent and broad immune responses against different variants of SARS-CoV-2 including Omicron in rats. The next steps following on from this work are to evaluate the safety and immunogenicity of this vaccine candidate in clinical trials. In the future, it may be possible to use a similar approach to develop new broad-spectrum vaccines against other viruses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Humanos , Ratas , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química
4.
Nat Commun ; 13(1): 3654, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1908175

RESUMEN

NVSI-06-08 is a potential broad-spectrum recombinant COVID-19 vaccine that integrates the antigens from multiple SARS-CoV-2 strains into a single immunogen. Here, we evaluate the safety and immunogenicity of NVSI-06-08 as a heterologous booster dose in BBIBP-CorV recipients in a randomized, double-blind, controlled, phase 2 trial conducted in the United Arab Emirates (NCT05069129). Three groups of healthy adults over 18 years of age (600 participants per group) who have administered two doses of BBIBP-CorV 4-6-month, 7-9-month and >9-month earlier, respectively, are randomized 1:1 to receive either a homologous booster of BBIBP-CorV or a heterologous booster of NVSI-06-08. The incidence of adverse reactions is low, and the overall safety profile is quite similar between two booster regimens. Both Neutralizing and IgG antibodies elicited by NVSI-06-08 booster are significantly higher than those by BBIBP-CorV booster against not only SARS-CoV-2 prototype strain but also multiple variants of concerns (VOCs). Especially, the neutralizing antibody GMT against Omicron variant induced by heterologous NVSI-06-08 booster reaches 367.67, which is substantially greater than that boosted by BBIBP-CorV (GMT: 45.03). In summary, NVSI-06-08 is safe and immunogenic as a booster dose following two doses of BBIBP-CorV, which is immunogenically superior to the homologous boost with another dose of BBIBP-CorV.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Inmunogenicidad Vacunal , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , Humanos , Inmunoglobulina G , SARS-CoV-2
5.
Signal Transduct Target Ther ; 7(1): 172, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1878517

RESUMEN

The increased coronavirus disease 2019 (COVID-19) breakthrough cases pose the need of booster vaccination. We conducted a randomised, double-blinded, controlled, phase 2 trial to assess the immunogenicity and safety of the heterologous prime-boost vaccination with an inactivated COVID-19 vaccine (BBIBP-CorV) followed by a recombinant protein-based vaccine (NVSI-06-07), using homologous boost with BBIBP-CorV as control. Three groups of healthy adults (600 individuals per group) who had completed two-dose BBIBP-CorV vaccinations 1-3 months, 4-6 months and ≥6 months earlier, respectively, were randomly assigned in a 1:1 ratio to receive either NVSI-06-07 or BBIBP-CorV boost. Immunogenicity assays showed that in NVSI-06-07 groups, neutralizing antibody geometric mean titers (GMTs) against the prototype SARS-CoV-2 increased by 21.01-63.85 folds on day 28 after vaccination, whereas only 4.20-16.78 folds of increases were observed in control groups. For Omicron variant, the neutralizing antibody GMT elicited by homologous boost was 37.91 on day 14, however, a significantly higher neutralizing GMT of 292.53 was induced by heterologous booster. Similar results were obtained for other SARS-CoV-2 variants of concerns (VOCs), including Alpha, Beta and Delta. Both heterologous and homologous boosters have a good safety profile. Local and systemic adverse reactions were absent, mild or moderate in most participants, and the overall safety was quite similar between two booster schemes. Our findings indicated that NVSI-06-07 is safe and immunogenic as a heterologous booster in BBIBP-CorV recipients and was immunogenically superior to the homologous booster against not only SARS-CoV-2 prototype strain but also VOCs, including Omicron.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , SARS-CoV-2
6.
Cell Discov ; 8(1): 17, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1692628

RESUMEN

The continuous emergence of SARS-CoV-2 variants highlights the need of developing vaccines with broad protection. Here, according to the immune-escape capability and evolutionary convergence, the representative SARS-CoV-2 strains carrying the hotspot mutations were selected. Then, guided by structural and computational analyses, we present a mutation-integrated trimeric form of spike receptor-binding domain (mutI-tri-RBD) as a broadly protective vaccine candidate, which combined heterologous RBDs from different representative strains into a hybrid immunogen and integrated immune-escape hotspots into a single antigen. When compared with a homo-tri-RBD vaccine candidate in the stage of phase II trial, of which all three RBDs are derived from the SARS-CoV-2 prototype strain, mutI-tri-RBD induced significantly higher neutralizing antibody titers against the Delta and Beta variants, and maintained a similar immune response against the prototype strain. Pseudo-virus neutralization assay demonstrated that mutI-tri-RBD also induced broadly strong neutralizing activities against all tested 23 SARS-CoV-2 variants. The in vivo protective capability of mutI-tri-RBD was further validated in hACE2-transgenic mice challenged by the live virus, and the results showed that mutI-tri-RBD provided potent protection not only against the SARS-CoV-2 prototype strain but also against the Delta and Beta variants.

7.
J Mol Graph Model ; 109: 108035, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1415578

RESUMEN

The pandemic of the COVID-19 disease caused by SARS-CoV-2 has led to more than 200 million infections and over 4 million deaths worldwide. The progress in the developments of effective vaccines and neutralizing antibody therapeutics brings hopes to eliminate the threat of COVID-19. However, SARS-CoV-2 continues to mutate, and several new variants have been emerged. Among the various naturally-occurring mutations, the E484K mutation shared by many variants attracted serious concerns, which may potentially enhance the receptor binding affinity and reduce the immune response. In the present study, the molecular mechanism behind the impacts of E484K mutation on the binding affinity of the receptor-binding domain (RBD) with the receptor human angiotensin-converting enzyme 2 (hACE2) was investigated by using the molecular dynamics (MD) simulations combined with the molecular mechanics-generalized Born surface area (MMGBSA) method. Our results indicate that the E484K mutation results in more favorable electrostatic interactions compensating the burial of the charged and polar groups upon the binding of RBD with hACE2, which significantly improves the RBD-hACE2 binding affinity. Besides that, the E484K mutation also causes the conformational rearrangements of the loop region containing the mutant residue, which leads to tighter binding interface of RBD with hACE2 and formation of some new hydrogen bonds. The tighter binding interface and the new hydrogen bonds formation also contribute to the improved binding affinity of RBD to the receptor hACE2. In addition, six neutralizing antibodies and nanobodies complexed with RBD were selected to explore the effects of E484K mutation on the recognition of these antibodies to RBD. The simulation results show that the E484K mutation significantly reduces the binding affinities to RBD for most of the studied neutralizing antibodies/nanobodies, and the decrease in the binding affinities is mainly owing to the unfavorable electrostatic interactions caused by the mutation. Our studies revealed that the E484K mutation may improve the binding affinity between RBD and the receptor hACE2, implying more transmissibility of the E484K-containing variants, and weaken the binding affinities between RBD and the studied neutralizing antibodies/nanobodies, indicating reduced effectiveness of these antibodies/nanobodies. Our results provide valuable information for the effective vaccine development and antibody/nanobody drug design.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19 , Anticuerpos de Dominio Único , Glicoproteína de la Espiga del Coronavirus/genética , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Neutralizantes , Humanos , Mutación , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA